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soft corals form aragonite-
precipitated columnar spiculite in 
mesophotic reefs
erez shoham1, thomas prohaska2, Zahava Barkay3, Andreas Zitek  2 & Yehuda Benayahu  1

surveys conducted in eilat’s upper mesophotic coral ecosystem (MCe) revealed protruding columnar 
calcareous structures with a Sinularia octocoral colony growing atop of each. the current study 
addressed the hypothesis that these colonies produce spiculites, and sought to determine (a) the 
spatial occurrence and dimensions of the spiculite-forming colonies and their species affiliation; (b) their 
microstructural features; and (c) the elemental composition of the columnar spiculites in comparison to 
the sclerites of the colonies. All the spiculite-forming colonies were exclusively found in the upper MCes 
and produced by S. vrijmoethi. this type of spiculite, including its elemental analysis, is reported here 
for the first time for coral reefs in general and for the MCE in particular. Examination of the spiculites 
by scanning electron microscopy and energy-dispersive X-ray spectroscopy revealed spindle shaped-
sclerites cemented by crystallites. The elemental composition of the sclerites differed from that of the 
cementing crystallites, in featuring ~8% Mg in the former and none in the latter. Inductively coupled 
plasma mass spectrometry revealed fragments of spiculite to be composed of 35% sclerites and 65% 
crystallites. X-ray powder diffraction analysis of individual sclerites indicated that they are composed 
exclusively of magnesium-calcite, and the spiculite fragments to also feature 9.3 ± 4% aragonite and 
5–7% amorphous calcium carbonate. Consequently, it is proposed that the formation of the crystallites, 
which lithify the sclerites, is caused by a non-biogenic aragonite precipitation, and that the living colony 
might benefit from this protruding spiculite structure by means of enhanced exposure to water flow.

Soft corals of the genus Sinularia (family Alcyoniidae) are widespread on the Indo-Pacific reefs and considered 
to be the most speciose among Octocorallia, with more than 185 described species1. These species display highly 
variable growth forms, from encrusting colonies with small knobs or ridges to tall and abundantly lobed ones, 
occurring in shallow reefs and down to the upper mesophotic coral-reef ecosystems (MCEs)2,3. Fleshy octocorals, 
mainly of the family Alcyoniidae, calcify numerous magnesium (Mg) calcitic sclerites as internal supporting skel-
etal elements, embedded in their soft coenenchyme2. Data on calcium carbonate polymorphs and Mg content in 
octocorals are sparse. Several Mediterranean gorgonian octocorals feature magnesium calcite as the only calcium 
carbonate polymorph (1.5–5% Mg, 6–9 mol% MgCO3, 0.16–0.025 Mg/Ca)4. Sinularia polydactyla sclerites were 
identified in Japan, composed of an Mg-bearing calcite polymorph (5–10 mol% MgCO3)5. A study on deep-sea 
octocorals (Keratoisis spp., Lepidisis spp., and Paragorgia spp.) in the south-west Pacific region revealed them to 
be composed of high-Mg calcite (8–11 mol% MgCO3)6. The bio-mineralization of octocoral calcitic sclerites in 
the surrounding high-Mg sea (aragonite sea7) was found to be mitigated by specialized extracellular proteins that 
might prevent Mg2+ from inhibiting calcite formation8.

Octocorals, therefore, are not usually considered as reef-builders, with a few known exceptions such as 
Tubipora musica, Heliopora coerulea, and Nanipora kamurai, which all deposit massive aragonite skeletons2,9. 
Some Sinularia species, however, have been described as able to consolidate spindle shaped-sclerites at the colony 
base to form spiculites, which led to the suggestion that certain fleshy octocorals may contribute to reef construc-
tion (e.g. refs10–12). A study in Taiwan13 recorded 22 spiculite-producing Sinularia species. Cores removed from 
living colonies there revealed a distinct transition in composition from the discrete spindle-shaped sclerites at 
the top of the colony, to the compact spiculite at the bottom, with its characteristic cementing calcium carbonate. 
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These Sinularia octocorals are thus evidently capable of accreting material into significant reef structures over 
time, and thus can be considered as reef-builders.

In Eilat (Gulf of Aqaba, northern Red Sea), a substantial diversity of Sinularia species is common along a wide 
depth gradient (e.g. refs14,15). During surveys conducted in Eilat’s upper MCEs, live Sinularia colonies were found 
uniquely growing on top of columnar structures, hypothesized here to be spiculites. No shallow colony was found 
to be growing in a similar fashion. Consequently, the following questions were addressed: (1) What are the spatial 
occurrence and morphometry of these colonies and their species affiliation? (2) What are the microstructural 
features of these columnar structures? and (3) What is their elemental composition? The latter two aspects were 
also examined in comparison with the spindle-shaped sclerites of the studied Sinularia. The results shed light 
on a peculiar feature of soft corals in the MCEs, reflected in the shape of unique calcareous columnar structures, 
which are suggested to benefit the living colony atop them. These structures have been confirmed to be spiculites, 
composed of Sinularia spindle-shaped calcite sclerites lithified by fibrous aragonite crystallites, whose distinct 
elemental composition is presented here for the first time.

Materials and Methods
study sites. Surveys were conducted in Eilat at three upper MCE-sites (30–45 m): (a) across from the 
Interuniversity Institute for Marine Sciences in Eilat (IUI); (b) “Coral Beach” Nature Reserve (NR); and (c) adja-
cent to the oil jetty of the Eilat Ashkelon Pipeline Company (EAPC) (see Fig. 1 in ref.3). The three sites are almost 
adjacent, separated from one another by 500 m. The IUI site features a moderate slope covered mostly by gravel; 
the NR- a steep continuous reef wall; and the EAPC- a steep to moderate rocky slope.

Occurrence and morphometry of columnar structures bearing Sinularia colonies. To examine 
the abundance of columnar structures bearing Sinularia colonies on their top (Fig. 1a–c), and taking into account 
that these were found mostly dispersed, 10–30 m apart, the Timed Swims approach was adopted16,17, in which two 
25-minute dives were conducted at each of the three MCEs. All six dives were carried out at depth of 30–45 m, 
since no columnar structures had been found in an extensive preliminary survey of the shallower depths (<30 m). 
Colonies were photographed alongside a measuring tape. Using scaled high-definition photos of the colonies, 
the height of each columnar structure, from its base on the seabed up to the coral colony base, together with the 
height and width of the live Sinularia colony found on its top (Fig. 1), were measured to the nearest cm. The col-
ony side-view area was then calculated by multiplying its height by the width. The colonies were also sampled for 
taxonomic identification (see also ref.3).

Figure 1. Sinularia vrijmoethi in Eilat. (a–c) Columnar structures bearing a live colony at mesophotic depths 
(32–44 m). (d) Flat and compressed growth form in the shallow reef (3 m).
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Microstructure of the columnar structures bearing Sinularia colonies and of the spindle 
shaped-sclerites. Cores, 2 cm in diameter and 5 cm long, were removed from the columnar structures using 
a pneumatic cup-drill, all perpendicular to their longitudinal axis. Fragments (n = 12, each 3 × 3 × 3 mm) were 
removed from the cores, immersed in 10% sodium hypochlorite for 10 minutes, followed by repeated rinsing in 
double-distilled water. The samples were then dried at room temperature. In order to elucidate their microstruc-
tural and elemental composition (see below) they were gold-coated and examined by Quanta 200 FEG ESEM 
(Environmental Scanning Electron Microscope). In addition, small fragments were removed from the respective 
Sinularia colonies found growing on the top of the columnar structures. Spindle-shaped sclerites were removed 
from these, treated as described above, and examined by ESEM. X-Ray Powder Diffraction was used in order 
to determine the types of calcium carbonate polymorphs of the cement in the spiculite and in the live colony 
sclerites. Data were collected using a Bruker d8 advanced difractometer equipped with a LYNXEYE-XE linear 
detector18.

elemental analysis. The elemental composition of the spindle-shaped sclerites from both the base of the 
living colonies and fragments of the columnar structures was examined with an Oxford liquid nitrogen cooled 
Si(Li) EDS (Energy Dispersive Spectroscopy) detector. Because treating these fragile crystalline features with 
ordinary polishing methods could obscure certain details, the samples were examined in their native state without 
polishing. The EDS was performed over crystalline flat facets. The x-ray information volume size due to e-beam 
interaction (1–10 micron for 20KeV beam energy) was well below the sample size. Element analysis by EDS 
thus refers to the sample composition. The flat facets were oriented in an optimum sample-detector orientation 
to derive quantitative analysis for all elements. EDS analysis was carried out while using the conventional EDS 
standard-less analysis method19. This involved using the Oxford company stored data for each element, with the 
correct element correction factors for the specific sample-detector setup20. Evaluation of possible sample destruc-
tion/modification by e-beam irradiation was done by secondary electron imaging. The relatively short EDS accu-
mulation time (50–100 sec) provided sufficient EDS signal-to-noise ratio without incurring sample destruction 
during the measurement.

In addition, bulk analysis of spindle-shaped sclerites and fragments of the columnar structures was conducted 
by digesting 0.1 g of sample using concentrated HNO3 (p.a., Merck, Darmstadt, Germany) in a hot plate diges-
tion at 100 °C, and analyzing it by inductively coupled plasma mass spectrometry (ICP-MS) (NexION 350D, 
PerkinElmer, Waltham, MA, USA). The surface of both types of samples (spindle-shaped sclerites and fragments 
of the columnar structures) was also analyzed for elemental composition using laser ablation inductively cou-
pled plasma mass spectrometry (LA-ICP-MS)21. Before performing the analysis, samples were sonicated for 
5 min using reagent grade I water, rinsed with reagent grade I water, air-dried under a laminar hood and stored 
in pre-cleaned PE vials until analysis. For the analysis, the samples were mounted on microscopic slides using 
double-sided tape. An ArF excimer laser (New Wave NWR193, ESI, Portland, OR, USA) was coupled to a high 
resolution ICP-MS (Element XR, Thermo Fisher Scientific, Waltham, MA, USA). Helium was used as carrier gas 
and mixed with Ar prior to introduction into the plasma torch. Line scans of selected areas of the samples (Fig. 2) 
were converted into two-dimensional images by using ArcGIS® (version 10.0) following a method recently devel-
oped and successfully applied for the advanced spatial analysis of time resolved LA-ICP-MS data (refs21–24).

Figure 2. Fragments of a calcareous columnar structure bearing a Sinularia colony, mounted on double-
sided tape (background) with indication of the area analyzed by laser ablation ICP-MS. Insert showing laser line 
rasters.
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All statistical analyses were performed using R version 3.0.2 and RStudio version 0.98.976. Statistical signifi-
cance was α < 0.05 for all tests.

Results
occurrence and morphometry of columnar structures. The underwater survey yielded 60 calcareous 
columnar structures all bearing colonies identified as S. vrijmoethi: 22 at the EAPC, 19 at the IUI, and 19 at the 
NR upper MCEs (Fig. 3). Most spiculite-forming colonies were found to be solitary, scattered 10–30 m apart, 
with only three observations of two-three columnar spiculites having originated next to one another (Fig. 1b). 
Some spiculites were wider at their basal part due to encrusting calcareous or soft organisms that add an external 
layer to their outer surface. The colonies featured an average side-view area of 187.7 ± 12.1 cm2 (Fig. 3, n = 60, 
range 42–420 cm2). There were no significant differences in colony size among the three sites (Fig. 3, Kruskal-
Wallis, p = 0.053). The columnar structures exhibited an average height of 18 ± 0.9 cm (Fig. 3, n = 60, range 
5–40 cm) and, similarly, there were no significant differences in height among these MCEs (Fig. 3, ANOVA, 
p = 0.1). Therefore, the values of all colony side-view area and column-height from the three sites were pooled 
and a scatterplot and boxplots presenting size frequency distribution were produced (Fig. 3). Analysis revealed a 
positive and significant correlation between the two parameters (Fig. 3, Pearson correlation, r = 0.45, p < 0.001). 
Linear regression analysis was used to determine whether the log of the side-view area can significantly predict 
the respective height of the columnar structure. The results of the regression indicate that the predictor explains 
22% of the variance (Fig. 3, R2 = 0.22, F(1,58) = 16.02, p < 0.001).

Microstructure and elemental composition of spindle-shaped sclerites and the columnar 
structures. ESEM images of the spindle-shaped sclerites from the base of S. vrijmoethi colonies are pre-
sented in Fig. 4a,b. Fragments removed from the columnar structures were found to be constructed of similar 
spindle-shaped sclerites, cemented by pillar crystals, hereafter referred to as crystallites (Fig. 4b–d). The findings 
indicate that the columnar structures are spiculites, with the fibrous crystallites lithifying the sclerites into a mas-
sive spiculite. The ESEM’s EDS detector analysis revealed that the spindle-shaped sclerites comprising the spicu-
lite contain 7.7 ± 0.3% Mg, whereas those of the crystallites contain only 0.1 ± 0.3% Mg (n = 9 readings each).

The concentration of spindle-shaped sclerites in fragments of the bulk spiculite was obtained by ICP-MS anal-
ysis (Table 1). Taking into account the Mg concentration in the spindle-shaped sclerites (77 mg/g), as measured 
by EDS, and in the crystallites (0.1 mg/g), also in comparison to the spiculite bulk analysis (27 mg/g), it can be 
concluded that the spiculite fragments are composed of ca. 35% spindle-shaped sclerites and the 65% crystallites.

Laser ablation ICP-MS profile of a single spindle-shaped sclerite of S. vrijmoethi (Fig. 5) revealed a highly 
homogeneous distribution of the following measured elements: Na, Mg, Sr, and Ba in the Ca matrix (average 
relative standard deviation of 10%). The average elemental content of Na, Sr, Ba, and Mg as determined by 
LA-ICP-MS is presented in Table 2.

The lateral distribution of Na, Sr, Ba, and Mg on the selected spiculite area is presented in Fig. 6.

XRD analysis. Two samples were analyzed: sclerites isolated from the living colony and spiculite fragments 
taken from the middle part of the column. In both samples, magnesium-calcite was identified (Fig. 7) while arag-
onite was found only in the spiculite fragments. Using Rietveld refinement calculation, 9.3 ± 4% of the spiculite 
fragments was found be aragonite, and from the background interpolation, the presence of about 5–7% amor-
phous calcium carbonate is estimated. The structural parameters determinate for the aragonite phase are: grain 
size = 101(12) nm; a = 4.9671(9) Å; b = 7.977(2) Å; c = 5.7538(8) Å. For the magnesium-calcite phase: grain 
size = 53.4(7) nm; a = 4.9348(4) Å; c = 16.822(2)Å.

Figure 3. Scatter and box plots of columnar structure height and profile area of their respective Sinularia 
vrijmoethi colonies in Eilat’s mesophotic reefs. Eilat Ashkelon Pipeline Company (gray), Interuniversity Institute 
for Marine Sciences (blank), and Nature Reserve (black) (n = 22, 19, and 19 structures, respectively). Solid line 
presents linear model regression with r2 = 0.2; and dashed line- logarithmic regression with r2 = 0.22 (Pearson 
correlation, r = 0.45, p < 0.001).
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Discussion
The findings of the current study confirmed the hypothesis that colonies of S. vrijmoethi produce columnar spicu-
lites in Eilat’s upper MCEs. Although spiculites have been reported in previous studies, this particular type of 
columnar spiculite is a feature uniquely found at mesophotic depths, and is reported here for the first time. In his 
study, Konishi10 did not provide the species affiliation of the spiculite-producing octocoral he reported, nor any 
morphometric details; Schuhmacher11 reported that S. leptoclados and S. minima form spiculites in the Sudanese 
Red Sea, found from shallow water down to 35 m. These were up to 110 cm long and 20 cm wide, but differ mor-
phologically from those described in the present study; Cornish & DiDonato12 studied the sclerite masses noted 
by Cary25 and referred them to spiculites of S. polydactyla found in shallow reefs, but they did not record their 
abundance or morphometry; and Jeng et al.13, who reported spiculites at depths of 10–15 m on southern Taiwan 
reefs, concluded that the calcification process leads to cementation of the sclerites, which takes place at the base of 
the colony and differs from sclerite formation. In all the above studies, Sinularia spiculites were reported to form 
large masses, with none resembling the columnar ones produced by S. vrijmoethi found in Eilat’s upper MCEs. 
The lack of such spiculite in Eilat’s well-studied shallow reefs suggests that it may serve as an adaptation of this 
species in the upper MCEs (see below).

The current study recorded a range of spiculite heights in Eilat’s upper MCE (Fig. 3: 18 ± 0.9 cm), albeit smaller 
than those reported in previous studies: 10: 110 cm, 11: “continuous reefs”, 12: “large boulders”. The noticeably small 
colony-size and spiculite dimensions in Eilat might derive from a low calcification rate in the upper MCEs, a 
subject that awaits future studies. The colony size of S. vrijmoethi corresponded to the respective spiculite height 
(Fig. 3), suggesting a direct and non-linear relationship between the two. Nonetheless, only 22% of the variation 
in spiculite height is explained by colony size, probably due to the distinct morphology of S. vrijmoethi colonies 
in the MCE. Their morphology differs from that of the shallow-reef colonies, where they form beds composed 
of aggregated colonies of various sizes (Fig. 1d). It appears that the MCE colonies may suffer from physiological 
constraints (i.e. light26) that might limit their horizontal growth, as opposed to the shallow reef. However, they 

Figure 4. Environmental scanning electron microscope micrographs of fractured spiculite-bearing colony of 
Sinularia vrijmoethi. (a) Spindle-shaped sclerite with surface warts. (b) Fractured spiculite revealing sclerites 
lithified by fibrous crystallites. (c) Magnified cementing material between spindle-shaped sclerites. (d) Fibrous 
crystallites with euhedral crystal morphology.
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grow on the top of the spiculite, featuring a nearly round morphology and continuously depositing sclerites, thus 
lengthening the spiculite underneath. This, in turn, might benefit the colonies through exposure to a better water 
flow compared to that prevailing on the seabed and consequently to an increased nutrient and plankton flow27. 
The advantages of this increase in elevation and the possible shift of octocoral nutrition from autotrophic in the 
shallow reef to heterotrophic in the MCEs, are the subject of our ongoing research. The disadvantages might 
include (in cases in which the spiculite cementation rate is lower than the colony growth rate) a reduction in 
available substrate for the colony base, ultimately limiting colony size.

Element
Spindle-shaped 
sclerites

Spiculite 
fragments

Difference 
(%) Unit

Li 1.6 1.6 0 µg/g

Na 1.9 1.9 0 mg/g

Mg 20.5 26.9 31.2 mg/g

Al 1.1 13.9 1163.6 µg/g

K 1.6 0.06 −96.3 mg/g

Ca 156 246 57.7 mg/g

V 0.22 0.15 −31.8 µg/g

Mn 9.5 4.5 −52.6 µg/g

Fe 0.89 1.1 23.6 mg/g

Co 0.22 0.5 127.3 µg/g

Ni 2.2 5.2 136.4 µg/g

Cu 0.33 0.3 −9.1 µg/g

Zn 5.4 2.2 −59.3 µg/g

Rb 0.02 0.1 400 µg/g

Sr 0.96 2.1 118.8 mg/g

Mo 0.17 0.1 −41.2 µg/g

Ba 4.1 8 95.1 µg/g

Tl 0.16 0.02 −87.5 µg/g

Pb 0.04 0.29 625 µg/g

U 0.04 0.32 700 µg/g

Table 1. Elemental content of spindle-shaped sclerites of Sinularia vrijmoethi and of spiculite fragments (bulk 
analysis using ICP-MS) after digestion; n = 3 replicates. Relative measurement uncertainty corresponds to 10% 
(Urel; k = 2).

Figure 5. Laser ablation ICP-MS profiles with concentrations of Na, Sr, Ba, and Mg along two spindle-shaped 
sclerites isolated from an Sinularia vrijmoethi colony tissue.

Element Na Mg Sr Ba

Sclerite 1
(mg/g) 4.6 56.53 3.17 5.00

RSD 10% 13% 7% 11%

Sclerite 2
(mg/g) 5.6 82.88 3.49 4.69

RSD 13% 12% 8% 12%

Table 2. Elemental content of Na, Mg, Sr, and Ba in two spindle-shaped sclerites of Sinularia vrijmoethi 
obtained by Laser ablation ICP-MS.
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Some spiculites are wider at their base, being encrusted by organisms such as calcareous algae, bryozoans, and 
sponges. At the steep NR and EPCA MCE sites the spiculites are found among the stony-coral colonies and there-
fore contribute to the complex reef structure. In the IUI MCE plateau, which is covered with gravel, the vertical 
spiculites emerging from the flat bottom are distinct due to their vertical nature.

As most of the differences between sites can be attributed to substrate and reef steepness, as described in the 
Methods section, the Results indicate that the abundance and size of the Sinularia colonies that form spiculites 
is unaffected by these factors. As opposed to the shallow upper fore-reef in Eilat, where S. vrijmoethi colonies are 
common, grow in patches and do not consolidate columnar spiculites3, in the MCE, spiculite–forming colonies 
were found to be solitary and individually scattered 10–30 m apart, with three exceptions of spiculites having 
originated next to one another (Fig. 1b).

Figure 6. Laser ablation ICP-MS lateral distribution of (a) Na, (b) Sr, (c) Ba, and (d) Mg on selected spiculite 
area.

Figure 7. X-ray powder difraction analysis of sclerites from the living colony (black) and of spiculite fragments 
(blue). Reference markings are shown for aragonite (green, PDF 00-041-1475) and magnesium-calcite (red, 
PDF 01-086-2336).
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Similarly to Jeng et al.13, the current study presents images of fractured fragments removed from the spiculites 
(Fig. 3). Octocoral sclerites are composed of magnesium-enriched calcite, with an Mg content of 12–15%5; and 
are known to possess a striking micrometric-scale concentration-zoning of this element28. In the current study, 
the elemental composition of S. vrijmoethi sclerites differed from that of the crytallites, with the former con-
taining ~8% Mg, as opposed to almost none in the latter. Consequently, it is suggested that the formation of the 
fibrous crystallites is a purely chemical action, essentially being an inorganic precipitation of aragonite29.

The combination of data obtained by ICP-MS (bulk elemental analysis) with the EDS analysis enabled us to 
determine the composition of the studied samples as comprising 35% sclerites and 65% crystallites. Analysis of 
the spindle-shaped sclerites revealed their homogenous elemental distribution as well as their homogeneous 
composition per sclerite. The elemental content in the different spindle-shaped sclerites varied within 10% for Na, 
Sr, and Ba, while the variation in Mg was higher (>30%).

The lateral distribution within the spiculite surface area revealed a regular distribution of Na. However, that of 
Sr, Ba, and Mg featured small areas with increased elemental content, supporting the hypothesis of the presence 
of small crystalline Mg-rich regions (see Fig. 4b–d). The overall conclusion is that the spindle-shaped calcite 
sclerites are cemented by euhedral crystallites featuring fibrous aragonite. A similar cement was recorded by 
Grammer et al.30 as exhibiting rapid rates of cementation with far-reaching implications for the morphology of 
some carbonate substrates in the marine environment. Undoubtedly, the dynamics of the lithification process of 
sclerites requires future studies, also in relation to the prevailing physical and chemical conditions in the MCEs.

The position of S. vrijmoethi colonies on top of the columnar spiculite is suggested to correspond to the pre-
vailing flow regime, in which maximum flow prevails above the seabed of the upper MCE. The spiculite morpho-
metry may thus benefit the colony on its top, providing it with access to a suitable flow regime for the effective 
capture of planktonic food. As spiculites have not been recorded in the shallow reefs of Eilat, further studies on 
this topic will undoubtedly shed light on the adaptive significance of the spiculite morphometry to the environ-
mental conditions of the upper MCEs. Consequently, it is argued that the significance of spiculites in the reef 
environment is beyond that of merely their hermatypic function.

Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon request.
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